Abstract

We present a novel fluorescence spectral unmixing based on target-to-background separation preprocessing, which effectively separates the multi-target fluorescence from all background autofluorescence (BF) without any hardware-based BF acquisition and tissue specific BF estimation. Specifically, we first enhance the intrinsic accumulation contrast in target-to-background fluorescence using h-dome transformation; then separate multi-target fluorescence areas from the background in sparse multispectral data utilizing kernel maximum autocorrelation factor analysis; we further use fast marching-based image inpainting method to patch up the removed target fluorescence areas and reconstruct the multispectral BF; with the BF matrix being subtracted from the original data, the multi-target fluorophores are easily unmixed from the subtracted data using multivariate curve resolution-alternating least squares method. In two preliminary in-vivo experiments, the proposed method demonstrated excellent performance to unmix multi-target fluorescences while other state-of-art unmixing methods failed to get desired results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.