Abstract

Objective monitoring and assessment of human motor behavior can improve the diagnosis and management of several medical conditions. Over the past decade, significant advances have been made in the use of wearable technology for continuously monitoring human motor behavior in free-living conditions. However, wearable technology remains ill-suited for applications which require monitoring and interpretation of complex motor behaviors (e.g., involving interactions with the environment). Recent advances in computer vision and deep learning have opened up new possibilities for extracting information from video recordings. In this paper, we present a hierarchical vision-based behavior phenotyping method for classification of basic human actions in video recordings performed using a single RGB camera. Our method addresses challenges associated with tracking multiple human actors and classification of actions in videos recorded in changing environments with different fields of view. We implement a cascaded pose tracker that uses temporal relationships between detections for short-term tracking and appearance based tracklet fusion for long-term tracking. Furthermore, for action classification, we use pose evolution maps derived from the cascaded pose tracker as low-dimensional and interpretable representations of the movement sequences for training a convolutional neural network. The cascaded pose tracker achieves an average accuracy of 88% in tracking the target human actor in our video recordings, and overall system achieves average test accuracy of 84% for target-specific action classification in untrimmed video recordings.

Highlights

  • Clinical assessment of human motor behavior plays an important role in the diagnosis and management of medical conditions like Parkinson’s Disease (PD) [1]

  • We addressed the problem of person-centric action recognition by long-term tracking of the target human actor

  • Short-term tracking based on temporal relationships between adjacent frames resulted in 1466 ± 653 tracklets per video, which were fused by using appearance-based features for long-term tracking

Read more

Summary

Introduction

Clinical assessment of human motor behavior plays an important role in the diagnosis and management of medical conditions like Parkinson’s Disease (PD) [1] Such assessments can only be performed intermittently by trained clinical examiners, which limits the quantity and quality of information that can be collected to understand the impact of disease in the real-world setting. To address these limitations, significant efforts have been made to develop wearable sensing technologies that can be used for continuously monitoring various types of motor symptoms and behaviors [2,3,4].

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call