Abstract

Abstract The shape memory effect and the superelasticity of nickel titanium (NiTi) alloys are beneficial for design of compliant mechanisms. The superelastic behavior of NiTi can be tailored for optimal flexure design in the compliant mechanism, allowing large deformation and shape change. The shape memory effect can also be utilized to actuate the compliant mechanism flexures enabling programing of the material to take on variety of shapes at different temperatures over time. The compliant mechanism analyzed in this work is inspired from 3D multi leg spider-like locomotion, enabling movement in all directions by triggering different target shapes in time. The control of the material spatial distribution facilitated by additive manufacturing will enable tailored superelastic and shape memory behavior in the flexures of the multifunctional 3D compliant mechanism. Design optimization and analyses as well as overall shape change are explored in this work. Superelastic joints are introduced as flexures to enable segment flexibility. The temperature change is used for actuation taking in consideration different initial strain conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.