Abstract
The shrinkage estimator of a high-dimensional covariance matrix relies on a preassigned target matrix during data processing. This paper provides an adaptive approach for selecting the optimal Toeplitz target matrix. We discover a sufficient and necessary condition for characterizing the two kinds of target matrices with the Toeplitz structure, and we propose an adaptive selection algorithm by measuring the similarity between the data and the Toeplitz structure. Numerical simulations and an empirical study on monetary funds verify the effectiveness of the selection approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.