Abstract

We study the target searches of interacting Brownian particles in a finite domain, focusing on the effect of interparticle interactions on the search time. We derive the integral equationfor the mean first-passage time and acquire its solution as a series expansion in the orders of the Mayer function. We analytically obtain the leading order correction to the search time for dilute systems, which are most relevant to target search problems and prove a universal relation given by the particle density and the second virial coefficient. Finally, we validate our theoretical prediction by Langevin dynamics simulations for the various types of the interaction potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.