Abstract

We study a range-constrained variant of the multi-UAV target search problem where commercially available UAVs are used for target search in tandem with ground-based mobile recharging vehicles (MRVs) that can travel, via the road network, to meet up with and recharge a UAV. We propose a pipeline for representing the problem on real-world road networks, starting with a map of the road network and yielding a final routing graph that permits UAVs to recharge via rendezvous with MRVs. The problem is then solved using mixed-integer linear programming (MILP) and constraint programming (CP). We conduct a comprehensive simulation of our methods using real-world road network data from Scotland. The assessment investigates accumulated search reward compared to ideal and worst-case scenarios and briefly explores the impact of UAV speeds. Our empirical results indicate that CP is able to provide better solutions than MILP, overall, and that the use of a fleet of MRVs can improve the accumulated reward of the UAV fleet, supporting their inclusion for surveillance tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.