Abstract
Despite the benefits of chemotherapy, radiotherapy, and surgical resection in cancer treatment, the efficiency of these techniques is insufficient. The development of nanocarriers enabling combined diagnosis and therapy is progressive but still is limited. In this paper, we developed bandgap-modified Fe3O4@Ag@CuS nanoparticles conjugated with AS1411 DNA aptamer (aptaNPs) for photothermal therapy (PTT) and dual magnetic resonance (MR) and infrared (IR) imaging. It is shown that the developed nanoparticles induce localized surface plasmon resonance (LSPR) to promote the efficiency of photothermal therapy. In vitro and in vivo studies demonstrate that aptaNPs are highly specific against 4T1 cancer cells after intravenous administration over 8 h, owing to the target-responsive ability of aptamer. The results also determine improved uptake of aptaNPs in the target tissue as compared with the unconjugated-aptamer nanoparticles. A highly efficient light-to-heat conversion (34 %) with a mass extinction coefficient of 1.97 L cm−1 g−1 is also demonstrated. The developed hybrid nanoparticles bear the potential of combined monitoring (Fe3O4 in MRI), targeting (aptamers), and triggering (Ag@CuS in PTT); hence, they can be used for selective therapy of pathologies such as late-stage cancers and deep-seated cancerous tissues without causing damage to adjacent normal tissues.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.