Abstract

Silvoarable agroforestry (SAF) has recently been proposed as an alternative land-use system for Europe. Data on soil, climate, topography, and land cover were integrated in a geographic information system (GIS) to identify agroforestry target regions where (i) productive growth of trees ( Juglans spp ., Prunus avium, Populus spp ., Pinus pinea, and Quercus ilex) in SAF systems could be expected and where (ii) SAF systems could potentially reduce the risk of soil erosion, nitrate leaching and increase landscape diversity. The analysis shows that the investigated tree species could grow productively in SAF systems on 56% of the arable land throughout Europe (potential productive tree growth area). 80% of the European arable land was classified as potential risk area for soil erosion, nitrate leaching, and/or landscape diversity. Overlaying potential productive tree growth areas with the arable land that was considered as environmental risk area yielded target regions. They were found to make up about 40% of the European arable land and thus SAF could contribute to soil protection on 4%, to mitigate nitrate leaching on 18% and to increase landscape diversity on 32% of European arable land. Although limited by constrained data availability, the study shows that SAF could be implemented in a productive way throughout Europe and that it could help resolve some of the major land-use problems. The environmental benefits could justify the support of SAF by subsidies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.