Abstract

An increasing number of proteins are found that are regulated by the Ca(2+)-free state of calmodulin, apocalmodulin. Many of these targets harbor a so-called IQ motif within their primary sequence, but several target proteins of apocalmodulin lack this motif. We investigated whether the Ca(2+)-dependent calmodulin-binding site of nitric oxide synthase I could be transformed into a target site of apocalmodulin. Synthetic peptides representing the wild-type amino acid sequence and several peptides carrying mutations were studied by isothermal titration calorimetry and fluorescence spectroscopy. A single amino acid substitution of a negative charge to a positive charge can convert a classical Ca(2+)-dependent binding site of calmodulin into a target site for apocalmodulin. In addition, the introduction of hydrophobic amino acids increases the apparent binding affinity from the micromolar to the nanomolar range. Binding of wild-type and mutant peptides to Ca(2+)-calmodulin was enthalpically driven, and binding to apocalmodulin was entropically driven. Our data indicate that only a few selected amino acid positions in a calmodulin-binding site determine its Ca(2+) dependency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.