Abstract
In this letter, synthetic aperture radar (SAR) target recognition via classification on Riemannian geometry is presented. To characterize SAR images, which have broad spectral information yet spatial localization, a 2-D analytic signal, i.e., the monogenic signal, is used. Then, the monogenic components are combined by computing a covariance matrix whose entries are the correlation of the components. Since the covariance matrix, a symmetric positive definite one, lies on the Riemannian manifold, it is unreasonable to be dealt with by the standard learning techniques. To address the problem, two classification schemes are proposed. The first maps the covariance matrix into the vector space and feeds the resulting descriptor into a recently developed framework, i.e., sparse representation-based classification. The other embeds the Riemannian manifold into an implicit reproducing kernel Hilbert space, followed by least square fitting technique to recover the test. The inference is reached by evaluating which class of samples could reconstruct the test as accurately as possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.