Abstract

Converting waste activated sludge into catalysts for the removal of antibiotics in water fulfils the dual purpose of waste-to-resource and hazardous pollution elimination. In this study, sludge-derived biochar (SDB) for efficient periodate (PI) activation was first prepared via one-step pyrolysis of potassium permanganate-polyhexamethylenebiguanide conditioned sludge without additional modification. The SDB (750 °C)-PI system degraded 100% ofloxacin (OFL, 41.5 μM) within 6 min and was almost undisturbed by inorganic ions or humic acids. The experimental results confirmed that the predominant role of reactive iodine species (RIS) and the auxiliary involvement of singlet oxygen (1O2) jointly contributed to the OFL degradation. Theoretical calculations further indicated that the synergy between Mn and N/O induced local charge redistribution and improved electron transfer capability of SDB, leading to the formation of electron-rich Mn sites and enhanced Mn(II)↔Mn(III)↔Mn(IV) redox to promote PI activation. More importantly, the enhanced adsorption and charge transfer of PI on the Mn site of the Mn-N/O-C structures induced the I-O bond stretching and the rapid generation of RIS. This study offered a cost-effective strategy for developing SDB-based catalysts, further advancing the comprehension of sludge management and the intricate mechanisms underlying RIS formation in PI-advanced oxidation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.