Abstract

A target-oriented strategy can be applied to estimate a wave-equation least-squares inverse (LSI) image. By explicitly computing the wave-equation Hessian, the LSI image is obtained as the solution of a nonstationary least-squares inverse filtering problem. The rows of the Hessian are the nonstationary filters containing information about the acquisition geometry, the velocity model, and the band-limited characteristics of the seismic data. By exploiting the sparsity and the structure of the Hessian matrix, a large number of iterations, necessary to achieve convergence, can be computed cheaply. The results on a structurally complex model show the improvements of the LSI image versus the migrated image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.