Abstract

Activation of transcription initiation by the cI protein of phage lambda is thought to be mediated by a direct interaction between cl and RNA polymerase at the PRM promoter. Two negatively charged amino acid residues in the DNA binding domain of cI play a key role in activation, suggesting that these residues contact RNA polymerase. The subunit of RNA polymerase involved was identified by selecting polymerase mutants that restored the activation function of a mutant form of cI protein. Although previous studies suggest that several activators interact with the alpha subunit of RNA polymerase, the results here suggest that cI interacts with the sigma subunit. An arginine to histidine change near the carboxyl terminus of sigma specifically suppresses an aspartic acid to asparagine change in the activation region of cI. This finding supports the direct-contact model and suggests that a cluster of positively charged residues near the carboxyl terminus of sigma is the target of the negatively charged activation region of cI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.