Abstract

Panax ginseng is a medicinal herb that has therapeutic effects against neuronal damage. The main goal of the present study is to investigate the therapeutic potential of P. ginseng in treating neuronal damage through in silico analysis. The literature review was conducted to create a ingredients-target database for P. ginseng. The database was essential in identifying the targets related to neuronal damage, which was followed by the construction of protein-protein interaction network by the STITCH database. The enrichment analysis was performed using Cytoscape (ClueGO) software. The molecular docking analysis was ran using AutoDock and Discovery Studio. The literature search revealed the presence of 66 compounds in P. ginseng, which subsequently resulted in the retrieval of 102 potential targets of these compounds. They were screened for their association with neuronal damage. Three proteins, namely, Glutathione S-transferase P1, HSP90, and Mitogen-activated protein kinases (MAPK8), were found to be in prime interaction with the relative compounds. Subsequently, 91 Gene ontology terms were found, of which four genes were associated with neuronal damage. Molecular docking analysis also revealed good binding affinities of various compounds of P. ginseng to the selected target, MAPK8. In conclusion, the biological processes linked to the therapeutic action of P. ginseng involve the positive regulation of JUN kinase activity, chaperone-mediated protein folding, and MyD88-dependent toll-like receptor signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call