Abstract

A humanised monoclonal antibody, concizumab, that binds with high affinity to the Kunitz-type protease inhibitor (KPI) 2 domain of human tissue factor pathway inhibitor (TFPI) is in clinical development. It promotes coagulation by neutralising the inhibitory function of TFPI and may provide a subcutaneous prophylaxis option for patients with haemophilia. We aimed to study biodistribution and pharmacokinetics (PK) of concizumab. Blockage of cellular TFPI by concizumab was measured by tissue factor/Factor VIIa-mediated Factor X activation on human EA.hy926 cells. Biodistribution of concizumab was analysed in rabbits by immunohistology, and the PK was measured in rabbits and rats. Concizumab bound to cell surface TFPI on EA.hy926 cells and neutralised TFPI inhibition of Factor X activation. The antibody cross-reacted with rabbit TFPI, but not with rat TFPI, allowing for comparative PK studies. PK data in rats described a log-linear profile typical for a non-binding antibody, whereas PK data in rabbits revealed a non-linear, dose-dependent profile, consistent with a target-mediated clearance mechanism. Immunohistology in rabbits during target-saturation showed localisation of the antibody on the endothelium of the microvasculature in several organs. We observed a marked co-localisation with endogenous rabbit TFPI, but a negligible sub-endothelial build-up. Concizumab binds and neutralises the inhibitory effect of cell surface-bound TFPI. The PK profile observed in rabbits is consistent with a TFPI-mediated drug disposition. Double immunofluorescence shows co-localisation of the antibody with TFPI on the endothelium of the microvasculature and points to this TFPI as a putative target involved in the clearance mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call