Abstract
Herein, an ultra-sensitive alkaline phosphatase (ALP) sensing strategy is developed by target-induced transcription amplification to trigger the trans-cleavage activity of Cas13a (TITAC-Cas). A double-stranded DNA duplex integrating a T7 promoter with 5′-phosphate and a transcription template (5′P-dsDNA) serves as the ALP substrate. In the absence of ALP, 5′P-dsDNA can be degraded by the λexo, leading to the subsequent transcription failure. In the presence of ALP, dephosphorylation reaction converts the 5′P-dsDNA to 5′OH-dsDNA and provides the protection for T7 promoter against the λexo-digestion. The intact T7 promoter of 5′OH-dsDNA can activate T7 transcription to produce a mass of single-stranded RNA (ssRNA). The ssRNA products possess a full complementarity to the spacer of crRNA and activate the ssRNase activity of CRISPR/Cas13a. As a result, Cas13a exhibits the indiscriminate cleavage of collateral FQ-reporter to release significant fluorescence signal, realizing the ultra-sensitive detection of ALP. Due to the triple signal amplification (ALP self-catalysis, T7 transcription amplification, and trans-cleavage of CRISPR/Cas13a), TITAC-Cas assay shows the ultra-sensitive detection of ALP activity with a wide linear range from 0.008 to 250 U∙L−1). The LOD is calculated to be 6 ± 0.52 mU∙L−1. TITAC-Cas assay is also successfully applied for analysis of ALP activity in HepG2 cell lysate with high fidelity. In addition, this method is employed to screen ALP inhibitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.