Abstract

SummaryEphrinAs and EphAs play critical roles during topographic map formation in the retinocollicular projection; however, their complex expression patterns in both the retina and superior colliculus (SC) have made it difficult to uncover their precise mechanisms of action. We demonstrate here that growth cones of temporal axons collapse when contacting nasal axons in vitro, and removing ephrinAs from axonal membranes by PI-PLC treatment abolishes this response. In conditional knockout mice, temporal axons display no major targeting defects when ephrinA5 is removed only from the SC, but substantial mapping defects were observed when ephrinA5 expression was removed from both the SC and from the retina, with temporal axons invading the target areas of nasal axons. Together, these data indicate that ephrinA5 drives repellent interactions between temporal and nasal axons within the SC, and demonstrates for the first time that target-independent mechanisms play an essential role in retinocollicular map formation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.