Abstract

Recently, the monitoring efficiency and accuracy of visible and infrared video have been relatively low. In this paper, we propose an automatic target identification method using surveillance video, which provides an effective solution for the surveillance video data. Specifically, a target identification method via multi-view and multi-task sparse learning is proposed, where multi-view includes various types of visual features such as textures, edges, and invariant features. Each view of a candidate is regarded as a template, and the potential relationship between different tasks and different views is considered. These multiple views are integrated into the multi-task spare learning framework. The proposed MVMT method can be applied to solve the ship’s identification. Extensive experiments are conducted on public datasets, and custom sequence frames (i.e., six sequence frames from ship videos). The experimental results show that the proposed method is superior to other classical methods, qualitatively and quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.