Abstract

Recent reports on America's infrastructure have emphasized the importance of structural health monitoring of civil infrastructures. System identification is a key component of many structural health monitoring strategies. Current system identification methods estimate models of a structure by measuring displacements, accelerations, and strains with wired or wireless sensors. However, these methods typically involve installation of a limited number of sensors at discrete locations and require additional data acquisition devices. To overcome these limitations, computer vision-based techniques have been introduced recently that employ high-speed and high-resolution cameras. Such cameras can be quite costly and require tedious installation of targets. This paper investigates the potential of using consumer-grade cameras for structural system identification without the need to install targets. The underlying methods for target-free displacement measurements are introduced, including region of interest selection, feature detection, point tracking, and outlier removal. A set of experiments are conducted to assess the efficacy of the proposed approach by comparing the accuracy of the identified model with one obtained using a conventional wired system. Careful comparison of the results demonstrates the significant potential of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call