Abstract

CRISPR-Cas immune systems defend prokaryotes against viruses and plasmids. CRISPR RNAs (crRNAs) associate with various CRISPR-associated (Cas) protein modules to form structurally and functionally diverse (Type I-VI) crRNP immune effector complexes. Previously, we identified three, co-existing effector complexes in Pyrococcus furiosus -Type I-A (Csa), Type I-G (Cst), and Type III-B (Cmr)-and demonstrated that each complex functions in vivo to eliminate invader DNA. Here, we reconstitute functional Cst crRNP complexes in vitro from recombinant Cas proteins and synthetic crRNAs and investigate mechanisms of crRNP assembly and invader DNA recognition and destruction. All four known Cst-affiliated Cas proteins (Cas5t, Cst1, Cst2, and Cas3) are required for activity, but each subunit plays a distinct role. Cas5t and Cst2 comprise a minimal set of proteins that selectively interact with crRNA. Further addition of Cst1, enables the four subunit crRNP (Cas5t, Cst1, Cst2, crRNA) to specifically bind complementary, double-stranded DNA targets and to recruit the Cas3 effector nuclease, which catalyzes cleavages at specific sites within the displaced, non-target DNA strand. Our results indicate that Type I-G crRNPs selectively bind target DNA in a crRNA and, protospacer adjacent motif dependent manner to recruit a dedicated Cas3 nuclease for invader DNA destruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.