Abstract

Proximity-localized catalytic hairpin assembly (plCHA) is intriguing for rapid and sensitive assay of an HIV-specific DNA segment (T*). Using template-integrated green Ag nanoclusters (igAgNCs) as emitters, herein, we report the first design of a T*-activated plCHA circuit that is confined in a three-way-junction architecture (3WJA) for the fluorescence sensing of T*. To this end, the T*-recognizable complement is programmed in a stem-loop hairpin (H1), and two split template sequences of igAgNCs are separately overhung contiguous to the paired stems of H1 and another hairpin (H2). The hybridization among H1, H2, and two single-stranded linkers (L1 and L2) allows the stable construction of 3WJA. Upon presenting the input T*, the 3WJA-localized plCHA is operated through toehold-mediated strand displacements of H1 and H2 reactants, and T* is rationally displaced and repeatably recycled, analogous to a specific catalyst, inducing more hairpin assembly events. Resultantly, the hybridized products enable the collective combination of two splits in the parent scaffold for hosting igAgNCs, outputting T*-dependent fluorescence response. Because of 3WJA structural confinement, the spatial proximity of two reactive hairpins yielded high local concentrations to manipulate the plCHA operation, achieving rapider reaction kinetics via T*-catalyzed recycling than typical catalytic hairpin assembly (CHA). This simple assay strategy would open the arena to develop various plCHA-based circuits capable of modulating the fluorescence emission of igAgNCs for applicable biosensing and bioanalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call