Abstract

The dopamine transporter (DAT) is targeted in substance use disorders (SUDs), and "non-classical”" DAT inhibitors with low abuse potential are therapeutic candidates. Lobinaline, from Lobelia cardinalis, is an atypical DAT inhibitor lead. Chemical synthesis of lobinaline is challenging; thus, "target-directed evolution" was used for lead optimization. A target protein is expressed in plant cells, and a mutant cell population is selected under conditions where target protein functional inhibition confers a survival advantage. Surviving mutants are "mined" for the targeted activity. Applied to a mutant L. cardinalis cell population expressing the human DAT, we identified 20 mutants overproducing DAT inhibitors. Microanalysis prioritized novel lobinaline derivatives, and we first investigated the more water-soluble lobinaline N-oxide. It inhibited rat synaptosomal [3H]DA uptake with an IC50 similar to lobinaline. Against repeated DA microinjections into the rat striatum, lobinaline produced transient DA clearance reductions. In contrast, lobinaline N-oxide prolongingly increased DA peak amplitudes, particularly in the ventral striatum. Lobinaline N-oxide also produced complex changes in post-peak DA clearance inconsistent with simple DAT inhibition. This unusual DAT interaction may prove therapeutically useful for treating SUDs. This study demonstrates the value of target-directed evolution of plant cells for optimizing lead compounds difficult to synthesize chemically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.