Abstract

Background: The rapid serial visual presentation (RSVP) paradigm is a high-speed paradigm of brain–computer interface (BCI) applications. The target stimuli evoke event-related potential (ERP) activity of odd-ball effect, which can be used to detect the onsets of targets. Thus, the neural control can be produced by identifying the target stimulus. However, the ERPs in single trials vary in latency and length, which makes it difficult to accurately discriminate the targets against their neighbors, the near-non-targets. Thus, it reduces the efficiency of the BCI paradigm.Methods: To overcome the difficulty of ERP detection against their neighbors, we proposed a simple but novel ternary classification method to train the classifiers. The new method not only distinguished the target against all other samples but also further separated the target, near-non-target, and other, far-non-target samples. To verify the efficiency of the new method, we performed the RSVP experiment. The natural scene pictures with or without pedestrians were used; the ones with pedestrians were used as targets. Magnetoencephalography (MEG) data of 10 subjects were acquired during presentation. The SVM and CNN in EEGNet architecture classifiers were used to detect the onsets of target.Results: We obtained fairly high target detection scores using SVM and EEGNet classifiers based on MEG data. The proposed ternary classification method showed that the near-non-target samples can be discriminated from others, and the separation significantly increased the ERP detection scores in the EEGNet classifier. Moreover, the visualization of the new method suggested the different underling of SVM and EEGNet classifiers in ERP detection of the RSVP experiment.Conclusion: In the RSVP experiment, the near-non-target samples contain separable ERP activity. The ERP detection scores can be increased using classifiers of the EEGNet model, by separating the non-target into near- and far-targets based on their delay against targets.

Highlights

  • Rapid serial visual presentation (RSVP) is a high-speed brain– computer interface (BCI) experiment paradigm

  • The ternary classification method increased the scores of the EEGNet classifier beyond the Support vector machine (SVM)

  • The MEG data were acquired during the RSVP experiment; the rapid presented pictures were natural scene pictures, and the pictures with pedestrians were used as target pictures

Read more

Summary

Introduction

Rapid serial visual presentation (RSVP) is a high-speed brain– computer interface (BCI) experiment paradigm. In the rapid presented sequences, the odd-ball pictures can trigger the unique event-related potential (ERP) activity, known as P300 visual-evoked potentials in the brain (Won et al, 2019). This neural signal is generally chosen from a variety of well-studied non-invasive electroencephalography (EEG) and magnetoencephalography (MEG) signals (Lawhern et al, 2018). The ERPs in single trials vary in latency and length, which makes it difficult to accurately discriminate the targets against their neighbors, the near-non-targets It reduces the efficiency of the BCI paradigm

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.