Abstract
In this article, to maximize the dimension of controllable subspace, we consider target controllability problem with maximum covered nodes set in multiplex networks. We call such an issue as maximum-cost target controllability problem. Likewise, minimum-cost target controllability problem is also introduced which is to find minimum covered node set and driver node set. To address these two issues, we first transform them into a minimum-cost maximum-flow problem based on graph theory. Then an algorithm named target minimum-cost maximum-flow (TMM) is proposed. It is shown that the proposed TMM ensures the target nodes in multiplex networks to be controlled with the minimum number of inputs as well as the maximum (minimum) number of covered nodes. Simulation results on Erdős-Rényi (ER-ER) networks, scale-free (SF-SF) networks, and real-life networks illustrate satisfactory performance of the TMM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.