Abstract

Frequency-domain electromagnetic induction (EMI) sensors can measure object-specific signatures that can be used to discriminate landmines from harmless clutter. In a model-based signal processing paradigm, the object signatures can often be decomposed into a weighted sum of parameterized basis functions, such as the discrete spectrum of relaxation frequencies (DSRF), where the basis functions are intrinsic to the object under consideration and the associated weights are a function of the target-sensor orientation. The basis function parameters can then be used as features for classifying the target. One of the challenges associated with effectively utilizing a model-based signal processing paradigm such as this is determining the correct model order for the measured data, as the number of basis functions containing fundamental information regarding the target under consideration is not known a priori. In this paper, sparse Bayesian relevance vector machine (RVM) regression is applied to simultaneously determine both the number of parameterized basis functions and their relative contributions to the measured signal assuming a DSRF signal model. The target is then classified utilizing the basis function parameters as features within a statistical classifier. Results for data measured with a prototype frequency-domain EMI sensor at a standardized test site are presented, and indicate that RVM regression followed by distance-based statistical classifiers utilizing the resulting model-based features provides an effective approach for classifying and identifying landmine targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.