Abstract

Recent congestion control protocols such as XCP and RCP achieve fair bandwidth sharing, high utilization, small queue sizes and nearly zero packet loss by implementing an explicit bandwidth share mechanism in the network routers. This paper develops new quantitative techniques for achieving the same results using only end-host measures. We develop new methods of computing bottleneck link characteristics, a new technique for sharing bandwidth fairly with Reno flows, and a new approach for rapidly converging to bandwidth share. A new transport protocol, TCP-Madison, that employs the new bandwidth sharing techniques is also defined in the paper. Experiments comparing TCP-Madison with FAST TCP, BIC-TCP and TCP-Reno over hundreds of PlanetLab and other live Internet paths show that the new protocol achieves the stated bandwidth sharing properties, is easily configured for near-optimal performance over all paths, and significantly outperforms the previous protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.