Abstract
Pesticide residues pose a great threat to human health. Biomonitoring with urine samples has often been used to assess pesticide exposure to humans, and identifying appropriate biomarkers is a premise of success. Current-use pesticides (CUPs) including neonicotinoids tend to be transformed in an organism, and thus the biomonitoring studies focusing on parent compounds alone may underestimate their risk. It is imperative to develop effective methods to analyze CUPs and their metabolites simultaneously and to identify viable metabolites as urinary biomarkers. For analyzing xenobiotics in urine, we optimized CH3 COCH3 -MgSO4 extraction coupled with a high-performance liquid chromatography-tandem mass spectrometry detection method. The method had sensitive method detection limits (0.11-1.39 ng/ml), low matrix effects, and satisfactory recovery and precision (49.4% ± 7.2%-99.8% ± 17.8%) for neonicotinoids and their metabolites. Application of the method for real samples showed that children living in rural areas in South China were ubiquitously exposed to CUPs, including neonicotinoids, fipronil, and chlorpyrifos, and urinary residues were mainly in the form of metabolites. Suitable biomarkers were identified for individual neonicotinoids, including imidacloprid-olefin and imidacloprid-guanidine for imidacloprid, acetamiprid-N-desmethyl for acetamiprid, thiacloprid-amide for thiacloprid, and N-desmethyl-thiamethoxam and thiamethoxam for thiamethoxam. Three metabolites were mainly reported in urine samples, including imidacloprid-urea, thiacloprid-amide, and N-desmethyl-thiamethoxam. In addition, the method was also applied for suspect screening, and an additional metabolite (clothianidin-desmethyl-nitrosoguanidine) was identified, showing its potential application in suspect analysis. Environ Toxicol Chem 2022;41:73-80. © 2021 SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.