Abstract

Disruptions in alternative splicing regulation play an essential role in ovarian cancer progression. However, the underlying mechanism remains unclear. TAR DNA-binding protein (TARDBP) plays a crucial role in alternative splicing regulation. Herein we found that TARDBP expression was significantly upregulated in OC tissue samples, particularly in cases of metastasis; further, TARDBP expression was markedly upregulated in OC patients with poor prognosis. These findings were validated by extensive tissue microarray data. TARDBP was also found to promote tumorigenesis and metastasis of OC cells in vitro and in vivo. Mechanistically, TARDBP increased the binding of the splicing factor serine/arginine-rich splicing factor 1 (SRSF1) to intron 7 of vascular endothelial growth factor (VEGF), increasing the formation of the proangiogenic VEGF165 isoform and decreasing that of the antiangiogenic VEGF165b isoform. The abnormal alternative splicing event was responsible for the activation of angiogenesis and contributed to the progression of OC. To conclude, TARDBP was found to regulate the alternative splicing of VEGF via SRSF1, induce the formation of VEGF165 but inhibit that of VEGF165b, and promote OC angiogenesis. Hence, TARDBP can serve as an independent prognostic factor and new target for OC cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.