Abstract
The molecular mechanisms involved in the replication of human immunodeficiency virus type 1 (HIV-1) may differ in various cell types and with various exogenous stimuli. Astrocytic glial cells, which can support HIV-1 replication in cell cultures and may be infected in vivo, are demonstrated to provide a cellular milieu in which TAR mutant HIV-1 viruses may replicate. Using transfections of various TAR mutant HIV-1 proviral constructs, we demonstrate TAR-independent replication in unstimulated astrocytic cells. We further demonstrate, using viral constructs with mutations in the tat gene and in the nuclear factor kappa B (NF-kappa B)-binding sites (enhancer) of the HIV-1 long terminal repeat, that TAR-independent HIV-1 replication in astrocytic cells requires both intact NF-kappa B moiety-binding motifs in the HIV-1 long terminal repeat and Tat expression. We measured HIV-1 p24 antigen production, syncytium formation, and levels and patterns of viral RNA expression by Northern (RNA) blotting to characterize TAR-independent HIV-1 expression in astrocytic glial cells. This alternative regulatory pathway of TAR-independent, Tat-responsive viral production may be important in certain cell types for therapies which seek to perturb Tat-TAR binding as a strategy to interrupt the viral lytic cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.