Abstract

Siwalik rocks of Pakistan are a virtually continuous, continental sedimentary sequence, extending in age from 18 to 1 ma b.p. This paper describes taphonomic features of late Miocene mammalian assemblages from a highly fossiliferous interval about 400 m thick, based on field documentation of sedimentary environments at 42 fossil localities and systematic fossil collection of 21 localities.Within a broadly fluvial system, I recognize four sedimentary environments of bone accumulation, distinguished by lithology, unit-thickness, unit-geometry, contacts, sedimentary structures, and relationship to adjacent units. Each environment corresponds to an association of lithofacies. Facies Association I is interpreted as the persistent, major channel bodies of a meandering fluvial system; Facies Association II as coarse-grained flood deposits, such as crevasse splays, deposited beyond the main channels; Facies Association III as channel margins, including levees and swales; and Facies Association IV as predominantly subaerial floodplains.Taphonomic features of bone assemblages from each facies association include skeletal-element composition, surface distribution of specimens, degree of articulation, hydraulic equivalence between organic and inorganic sedimentary particles, frequency of juvenile remains, size distribution of fauna, and an estimate of duration of accumulation of individual fossil localities. The distribution of these features among the four facies associations suggests that bone assemblages in Facies Associations I and II accumulated by the action of currents in river channels or floods, whereas bone assemblages in Facies Associations III and IV accumulated through concentration by biological agents and/or attrition at a repeatedly used site of predation.Inclusion in fluvial accumulations depends on initial availability of skeletal remains and hydraulic characteristics of individual skeletal elements, but not taxonomic identity per se. For biological accumulations, however, taxonomic composition reflects the preferences of the individual agents of accumulation. The probability of preservation of taxa in fluvial accumulations is probably mainly a function of body size, as reflected in the sizes of isolated skeletal elements. Thus, in this Siwalik system, bone assemblages that experienced fluvial transport are better representations of original community composition than bone assemblages created by biological agents or passive accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call