Abstract

Tensegrity consisting pinned-jointed struts and cables is lightweight and flexible. Extensive research works on the shape change of tensegrity, especially the deployable tensegrity structures and tensegrity robots have been carried out. This paper presents the structural characteristics of a tapered three-stage tensegrity model during shape change analysis by using a shape change method. The method employed sequential quadratic programming in the optimization of forced elongation in cables, such that the model can advance to the targets. Structural characteristics of the tapered tensegrity model were examined under various displacement schemes. It was found that the tensegrity model demonstrated bending, axial and torsional deformations during the shape change analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.