Abstract

Taper functions are required in modern forest management in estimation of the end forest products, to be classified for their life time in the environment. Based on a sample of 1640 trees of 10 species measured in volume, biomass and taper project on Mexico’s northern temperate, mixed, uneven-aged coniferous forests, 12 stem profile taper functions were fitted in order to select the equation that provides better diameter estimates at commercial tree height. Although several equations fitted better specific tree species, the Newnham (1990) equation consistently yielded better diameter estimates at any length of the stem for all studied species. The confidence intervals on the Newnham (1990) equation parameters showed that each species has an unique stem profile and, therefore, single parameter equations are reported. Because of lack of analytical integration, the recommended taper equation (when numerically integrated) provided compatible, unbiased total bole volume when contrasted to conventional timber volume assessments. Data for 637 circular, 1/10 ha, plots from temperate forests of Central Durango, Mexico estimated a mean of 135 m3 ha-1, of which 18, 59, 30, and 17 m3 ha-1 could be classified as poles, sawn wood, plywood and secondary forest products, respectively. This information can be used for the planning of the forest industry to optimize forest products derived from timber harvesting, as well as for estimating other environmental components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call