Abstract

AbstractAlong with the constantly evolving functional microsystems toward more diversification, the more rigorous design deliberation of pursuing higher mass‐loading of electrode materials and low‐temperature fabrication compatibility have imposed unprecedented demand on integrable all‐solid‐state thin‐film microbatteries. While the classic thin‐film intercalation cathode prepared by vacuum‐based techniques inevitably encountered a post‐annealing process, tape‐casting technologies hold great merits both in terms of high‐mass loading and low‐temperature processing. In this work, a novel microbattery configuration is developed by the combination of traditional tape‐casting thick electrodes and sputtered inorganic thin‐film solid electrolytes (~3 μm lithium phosphorus oxynitride). Enabled by physically pressed or vapor‐deposited Li as an anode, solid‐state batteries with tape‐casted LiFePO4 electrodes exhibit outstanding cyclability and stability. To meet integration requirements, LiFePO4/LiPON/Si microbatteries were successfully fabricated at low temperatures and found to achieve a wide operating temperature range. This novel configuration has good prospects in promoting the thin‐film microbattery enabling a paradigm shift and satisfying diversified requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.