Abstract
BackgroundIncomplete lateral compression fractures (including AO Type B2.1) are among the most common pelvic ring injuries. Although the treatment of choice remains controversial, sacroiliac (SI) screws are commonly used for the operative treatment of incomplete lateral compression fractures of the pelvic ring. However, the disadvantages of SI screws include the risk of nerve root or blood vessel injury. Recently, tape sutures have been found useful as stabilizing material for the treatment of injuries of the syndesmosis, the rotator cuff and knee ligaments. In this current study, we aimed to test the biomechanical feasibility of tape sutures to stabilize the pelvis in the setting of AO Type B2.1 injury.MethodsSix human cadaveric pelvises underwent cyclic loading to compare the biomechanical stability of different osteosynthesis methods in a B2.1 fracture model. The methods tested in this experiment were a FiberTape® suture and the currently established SI screw. A 3D ultrasound tracking system was used to measure fracture fragment motion. Linear regression was used to model displacement and stiffness at the posterior and anterior pelvic ring.ResultsAt the posterior fracture site, the FiberTape® demonstrated similar displacement (2.2 ± 0.8 mm) and stiffness (52.2 ± 18.0 N/mm) compared to the sacroiliac screw (displacement 2.1 ± 0.6 mm, P > 0.999; stiffness 50.8 ± 13.0 N/mm, P > 0.999).Considering the anterior fracture site, the FiberTape® again demonstrated similar displacement (3.8 ± 1.3 mm) and stiffness (29.5 ± 9.0 N/mm) compared to the sacroiliac screw (displacement 2.9 ± 0.8 mm, P = 0.2196; stiffness 37.5 ± 11.5 N/mm, P = 0.0711).ConclusionThe newly presented osteosynthesis, the FiberTape®, shows promising results for the stabilization of the posterior pelvic ring in AO Type B2.1 lateral compression fractures compared to a sacroiliac screw osteosynthesis based on its minimal-invasiveness and the statistically similar biomechanical properties.
Highlights
Fractures of the pelvic ring are frequently seen, especially in polytrauma patients or geriatric patients with poor bone quality [1,2,3]
An Arbeitsgemeinschaft Osteosynthese (AO) type B2.1 fracture was created in accordance with the AO classification, consisting of a partial sacral fracture reaching from the superior margin of the sacrum until the height of the second sacral neuroforamen and of the anterior fracture consisting of an ipsilateral anterior pelvic ring fracture
With a resolution of the ultrasound measuring system of 0.1 mm, we showed that the stabilization of the posterior pelvic ring with a minimally invasive tension banding achieves a comparable stability as a sacroiliac screw
Summary
Fractures of the pelvic ring are frequently seen, especially in polytrauma patients or geriatric patients with poor bone quality [1,2,3]. The necessity to compromise the intact sacroiliacal joint in the process of fixing the lateral sacral fracture is questionable Regarding this problem, a variety of operating methods have been recently developed to stabilize sacral fractures [2, 9, 12, 13]. Incomplete lateral compression fractures (including AO Type B2.1) are among the most common pelvic ring injuries. The treatment of choice remains controversial, sacroiliac (SI) screws are commonly used for the operative treatment of incomplete lateral compression fractures of the pelvic ring. The disadvantages of SI screws include the risk of nerve root or blood vessel injury. We aimed to test the biomechanical feasibility of tape sutures to stabilize the pelvis in the setting of AO Type B2.1 injury
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.