Abstract

A systematic mechanistic study of NO storage and reduction over Pt/Al 2O 3 and Pt/BaO/Al 2O 3 is carried out using Temporal Analysis of Products (TAP). NO pulse and NO/H 2 pump-probe experiments at 350 °C on pre-reduced, pre-oxidized, and pre-nitrated catalysts reveal the complex interplay between storage and reduction chemistries and the importance of the Pt/Ba coupling. NO pulsing experiments on both catalysts show that NO decomposes to major product N 2 on clean Pt but the rate declines as oxygen accumulates on the Pt. The storage of NO over Pt/BaO/Al 2O 3 is an order of magnitude higher than on Pt/Al 2O 3 showing participation of Ba in the storage even in the absence of gas phase O 2. Either oxygen spillover or transient NO oxidation to NO 2 is postulated as the first steps for NO storage on Pt/BaO/Al 2O 3. The storage on Pt/Ba/Al 2O 3 commences as soon as Pt–O species are formed. Post-storage H 2 reduction provides evidence that a fraction of NO is not stored in close proximity to Pt and is more difficult to reduce. A closely coupled Pt/Ba interfacial process is corroborated by NO/H 2 pump-probe experiments. NO conversion to N 2 by decomposition is sustained on clean Pt using excess H 2 pump-probe feeds. With excess NO pump-probe feeds NO is converted to N 2 and N 2O via the sequence of barium nitrate and NO decomposition. Pump-probe experiments with pre-oxidized or pre-nitrated catalyst show that N 2 production occurs by the decomposition of NO supplied in a NO pulse or from the decomposition of NOx stored on the Ba. The transient evolution of the two pathways depends on the extent of pre-nitration and the NO/H 2 feed ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.