Abstract
We consider the Sherrington–Kirkpatrick model of spin glasses with ferromagnetically biased couplings. For a specific choice of the couplings mean, the resulting Gibbs measure is equivalent to the Bayesian posterior for a high-dimensional estimation problem known as “${\mathbb{Z}}_{2}$ synchronization.” Statistical physics suggests to compute the expectation with respect to this Gibbs measure (the posterior mean in the synchronization problem), by minimizing the so-called Thouless–Anderson–Palmer (TAP) free energy, instead of the mean field (MF) free energy. We prove that this identification is correct, provided the ferromagnetic bias is larger than a constant (i.e., the noise level is small enough in synchronization). Namely, we prove that the scaled $\ell _{2}$ distance between any low energy local minimizers of the TAP free energy and the mean of the Gibbs measure vanishes in the large size limit. Our proof technique is based on upper bounding the expected number of critical points of the TAP free energy using the Kac–Rice formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.