Abstract

AbstractNeural surface reconstruction methods have demonstrated their ability to recover 3D surfaces from multiple images. However, current approaches struggle to rapidly achieve high‐fidelity surface reconstructions. In this work, we propose TaNSR, which inherits the speed advantages of multi‐resolution hash encodings and extends its representation capabilities. To reduce training time, we propose an efficient numerical gradient computation method that significantly reduces additional memory access overhead. To further improve reconstruction quality and expedite training, we propose a feature aggregation strategy in volume rendering. Building on this, we introduce an adaptively weighted aggregation function to ensure the network can accurately reconstruct the surface of objects and recover more geometric details. Experiments on multiple datasets indicate that TaNSR significantly reduces training time while achieving better reconstruction accuracy compared to state‐of‐the‐art nerual implicit methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.