Abstract

IntroductionBreast cancer (BC) is the most common malignancy in women with unfavorite prognosis. ObjectivesTanshinone IIA (Tan IIA) inhibits BC progression, however, the underlying mechanism remains largely undefined. MethodsThe cytotoxicity of Tan IIA was assessed by CCK-8 and LDH assays. Ferroptosis was monitored by the level of MDA, Fe2+, lipid ROS and GSH. IHC and western blot were employed to detect the localization and expression of SLC7A11, PIAS4, KDM1A and other key molecules. The SUMOylation of SLC7A11 was detected by Ni-beads pull-down assay and Co-IP. Luciferase and ChIP assays were employed to detect the direct association between KDM1A and PIAS4 promoter. The proliferative and metastatic properties of BC cells were assessed by colony formation, CCK-8 and Transwell assays, respectively. The in vitro findings were verified in xenograft and lung metastasis models. ResultsTan IIA promoted ferroptosis by suppressing SLC7A11 in BC cells. Silencing of PIAS4 or KDM1A inhibited cell growth and metastasis in BC. Mechanistically, PIAS4 facilitated the SUMOylation of SLC7A11 via direct binding to SLC7A11, and KDM1A acted as a transcriptional activator of PIAS4. Functional studies further revealed that Tan IIA decreased KDM1A expression, thus suppressing PIAS4 expression transcriptionally. The inhibition of PIAS4-dependent SUMOylation of SLC7A11 further induced ferroptosis, thereby inhibiting proliferation and metastasis in BC. ConclusionTan IIA promoted ferroptosis and inhibited tumor growth and metastasis via suppressing KDM1A/PIAS4/SLC7A11 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call