Abstract

This work introduces an efficient probe for sensitive and selective detection of Al3+ based on gold nanorods (AuNRs) with tannic acid (TA) surface modification. TA, which contains five digalloyl ester groups covalently attached to a glucose core, exhibits preferential complexation and binding to Al3+, leading to the formation of side-by-side assembly of AuNRs and consequently inducing a change in the UV–vis absorbance spectra of their aqueous suspension. By increasing the Al3+ concentration to 7.4μM, a rapid, linear blue-shift in the longitudinal LSPR band and a decrease in its intensity are exhibited, with a 0.09μM limit of detection (LOD). Furthermore, the probe shows good selectivity to Al3+, along with the capability of detecting this cation in real water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.