Abstract

We establish a duality between flat affine group schemes and rigid tensor categories equipped with a neutral fiber functor (called Tannakian lattice), both defined over a Dedekind ring. We use this duality and the known Tannakian duality due to Saavedra to study morphisms between flat affine group schemes. Next, we apply our new duality to the category of stratified sheaves on a smooth scheme over a Dedekind ring R to define the relative differential fundamental group scheme of the given scheme and compare the fibers of this group scheme with the fundamental group scheme of the fibers. When R is a complete DVR of equal characteristic we show that this category is Tannakian in the sense of Saavedra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.