Abstract

Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the trans-Tango genetic circuit-tracing technique to identify neurons synaptically downstream of Drosophila s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.