Abstract
Three-dimensional $ \mathcal{N} $ = 2 superconformal field theories are constructed by compactifying M5-branes on three-manifolds. In the infrared the branes recombine, and the physics is captured by a single M5-brane on a branched cover of the original ultraviolet geometry. The branch locus is a tangle, a one-dimensional knotted submanifold of the ultraviolet geometry. A choice of branch sheet for this cover yields a Lagrangian for the theory, and varying the branch sheet provides dual descriptions. Massless matter arises from vanishing size M2-branes and appears as singularities of the tangle where branch lines collide. Massive deformations of the field theory correspond to resolutions of singularities resulting in distinct smooth manifolds connected by geometric transitions. A generalization of Reidemeister moves for singular tangles captures mirror symmetries of the underlying theory yielding a geometric framework where dualities are manifest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.