Abstract

A complete solution is obtained for the wave field generated by the time-harmonic edgewise oscillations of a horizontal circular disk in an incompressible stratified viscous fluid. The linearized equations of viscous internal waves and the no-slip condition on the rigid disk are used to derive sets of dual integral equations for the fluid velocity and vorticity. The dual integral equations are solved by analytic reduction to sets of linear algebraic equations. Asymptotic results confirm that this edgewise motion no longer excites waves in the small-viscosity limit. Broadside oscillations and the effect of density diffusion are also considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call