Abstract

In the framework of the small amplitude Rayleigh–Taylor instability model, one derives an equation describing an evolution of a free surface shape of a thin layer of a viscous magnetic fluid located on the lower side of a horizontal flat plate under a uniform tangential magnetic field. The analytical expressions for a velocity field and a time-dependent pressure perturbation in the fluid layer are obtained. The influence of the magnetic field upon the Rayleigh–Taylor instability is examined. Obtained theoretical results are compared with the experimental observations of the final stage of the disintegration of the layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.