Abstract

BackgroundThe superior colliculus (SC) is a midbrain structure that plays a central role in visual processing. Although we have learned a considerable amount about the function of single SC neurons, the way in which sensory information is represented and processed on the population level in awake behaving animals and across a large region of the retinotopic map is still largely unknown. Partially because the SC is anatomically located below the cortical sheet and the transverse sinus, which render the measure of neuronal activity from a large population of neurons in the SC technically difficult to perform. New methodTo address this, we propose a tangential recording configuration using high-density electrode probes (Neuropixels) in mouse SC in vivo. This method permits a large number of recording sites (~200) inside the SC circuitry allowing to record from a large population of SC neurons along a vast area of retinotopic space. ResultsThis approach provides a unique opportunity to measure the activity of SC neuronal populations over up to ~2 mm of SC tissue reporting for the first time the continuous receptive fields coverage of almost the entire SC retinotopy. Here we describe how to perform targeted tangential recordings along the anterior-posterior and the medio-lateral axis of the mouse SC in vivo in the upper visual layers. Furthermore, we describe how to combine this approach with optogenetic tools for cell-type identification on the population level. Comparison with existing methodsVertical insertion has been a standard way to record visual responses in the SC. Inserting multi-shank probes vertically allows to cover a larger region of the SC but misses both the complete extent of the available retinotopy and the continuous measure allowed by the high density of recording sites on Neuropixels probes. ConclusionAltogether tangential insertions in the upper visual layers of the mouse SC using Neuropixels permit for the first time to access a majority of the retinotopically organized visual representation of the world at an unprecedented precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.