Abstract

The set of T-invariant curves in a Schubert variety through a T-fixed point is relatively easy to characterize in terms of its weights, but the tangent space is more difficult. We prove that the weights of the tangent space are contained in the rational cone generated by the weights of the T-invariant curves. In simply laced types, this remains true if “rational” is replaced by “integral”. We also obtain conditions under which every weight of the tangent space is the weight of a T-invariant curve, as well as a smoothness criterion. The results rely on equivariant K-theory, as well as the study of different notions of decomposability of roots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.