Abstract

In this paper, we investigate the distributional properties of the estimated tangency portfolio (TP) weights assuming that the asset returns follow a matrix variate closed skew-normal distribution. We establish a stochastic representation of the linear combination of the estimated TP weights that fully characterizes its distribution. Using the stochastic representation we derive the mean and variance of the estimated weights of TP which are of key importance in portfolio analysis. Furthermore, we provide the asymptotic distribution of the linear combination of the estimated TP weights under the high-dimensional asymptotic regime, i.e., the dimension of the portfolio p and the sample size n tend to infinity such that p / n → c ∈ ( 0 , 1 ) . A good performance of the theoretical findings is documented in the simulation study. In an empirical study, we apply the theoretical results to real data of the stocks included in the S&P 500 index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.