Abstract

In most eukaryotes, constitutive heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), is enriched on repetitive DNA, such as pericentromeric repeats and transposons. Furthermore, repetitive transgenes also induce heterochromatin formation in diverse model organisms. However, the mechanisms that promote heterochromatin formation at repetitive DNA elements are still not clear. Here, using fission yeast, we show that tandemly repeated mRNA genes promote RNA interference (RNAi)-mediated heterochromatin formation in cooperation with an antisilencing factor, Epe1. Although the presence of tandemly repeated genes itself does not cause heterochromatin formation, once complementary small RNAs are artificially supplied in trans, the RNAi machinery assembled on the repeated genes starts producing cognate small RNAs in cis to autonomously maintain heterochromatin at these sites. This "repeat-induced RNAi" depends on the copy number of repeated genes and Epe1, which is known to remove H3K9me and derepress the transcription of genes underlying heterochromatin. Analogous to repeated genes, the DNA sequence underlying constitutive heterochromatin encodes widespread transcription start sites (TSSs), from which Epe1 activates ncRNA transcription to promote RNAi-mediated heterochromatin formation. Our results suggest that when repetitive transcription units underlie heterochromatin, Epe1 generates sufficient transcripts for the activation of RNAi without disruption of heterochromatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call