Abstract

The unique focusing properties of the curved-field reflectron provide a simple solution to the problem of compensating for the broad range of energies of product ions produced postsource in a time-of-flight mass spectrometer. This has been shown previously for the technique known as postsource decay, but in this report we demonstrate its use for tandem time-of-flight mass spectrometry using a high-performance MALDI time-of-flight instrument modified by the addition of a collision chamber to enable the recording of mass-selected product ions formed by collision-induced dissociation (CID). In particular, the curved-field reflectron enables the use of the full 20-keV kinetic energy provided by the ion source extraction voltage as the collision energy in the laboratory frame and obviates the need to reaccelerate the product ions, using a second "source" or "lift" cell. Results are presented for the collision-induced dissociation of fullerenes over a range of collision gas pressures and precursor ion attenuation. In addition, CID tandem mass spectra are obtained for several peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.