Abstract

Dosage compensation in Drosophila is an epigenetic phenomenon utilizing proteins and long noncoding RNAs (lncRNAs) for transcriptional upregulation of the male X chromosome. Here, by using UV crosslinking followed by deep sequencing, we show that two enzymes in the Male-Specific Lethal complex, MLE RNA helicase and MSL2 ubiquitin ligase, bind evolutionarily conserved domains containing tandem stem-loops in roX1 and roX2 RNAs in vivo. These domains constitute the minimal RNA unit present in multiple copies in diverse arrangements for nucleation of the MSL complex. MLE binds to these domains with distinct ATP-independent and ATP-dependent behavior. Importantly, we show that different roX RNA domains have overlapping function, since only combinatorial mutations in the tandem stem-loops result in severe loss of dosage compensation and consequently male-specific lethality. We propose that repetitive structural motifs in lncRNAs could provide plasticity during multiprotein complex assemblies to ensure efficient targeting in cis or in trans along chromosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.